
MCDNN: An Approximation-Based Execution
Framework for Deep Stream Processing Under

Resource Constraints

Seungyeop Han

1

, Haichen Shen

1

, Matthai Philipose

2

, Sharad Agarwal

2

,

Alec Wolman

2

, Arvind Krishnamurthy

1

1: University of Washington

2: Microsoft Research

Presented by:

Cody LaFlamme, Michael Wollenhaup

https://homes.cs.washington.edu/~arvind/paper

s/mcdnn.pdf

What are DNN?
- A Deep Neural Network is classified by it’s large amount

of hidden layers. A neural network is considered “deep” if

it’s Credit Assignment Path (CAP) index is greater than 2

-Rather than layers in a neuron layout, DNN (specifically

CNN) can be represented by an array (the input image)

where each layer is a matrix operation. These operations

include:

 -Matrix Multiplication

 -Convolution

 -Max-Pooling

 -Non-Linearizing

 -Rescaling

The Resources Required for DNN
-DNN (Deep Neural Networks) are the dominant approach, especially in computer

vision applications, due to their “excellent recognition performance”

-However, DNN are expensive in terms of memory and GFLOPS of computing power

required for an operation, so they are typically only used in server based scenarios

-Due to the power of DNN, and the applications of DNN, there is strong motivation

for a mobile implementation

-There are some solutions currently

in place such as hand-crafted DNN

for execution on co-processors (sw)

and custom hardware accelerators (hw)

Continuous Mobile Vision Systems
-This paper will specifically target enabling a large

collection of face, scene, and object recognition

algorithms to be applied to video streams from mobile

devices

-The DNN are expected to be run multiple times to

many of the frames

-The example to the right is a “state-of-the-art

mobile/cloud Continuous Mobile Vision (CMV) system

-A resolution of 4096x2160 pixels (large FOV) @ 15

FPS would be a reasonable use-case of this model

Continuous Mobile Vision Systems
-The device would have an expected power

consumption of around 1.3-1.6 W (90 mW for imaging,

0.7-1 W for wireless offload, and 0.5 W on

compression)

-Utilizing a realistic compression (100x) would yield a

16 Mbps stream, or around 2.1 TB per month at 10

hours of usage per day

-If we make a consertive estimation of 1 DNN applied

per frame and 100 ms execution latency; a single CPU

would need 1.5-3 cores (commonly more) to keep up

with 15-30 frames per second

-However, a large 3Ah mobile phone battery would

yield roughly 1.2 W over 10 hours; a mobile plan would

only allow around 10 GB per month

Approximation as a Solution for CMVS
-This paper implements a solution to this problem

that finds itself part way between the hardware

accelerators and the handcrafted DNN software

solution. It is called model optimization.

-These are techniques that apply automatically to

any DNN and reduce associated memory and

processing costs, typically at the cost of

classification accuracy.

-It is possible to sacrifice a moderate amount of

accuracy (1%-3%), while obtaining memory

reduction that allow the models to fit within mobile

memories (10x reduction), and processing

reduction that allows the model to be executed on a

mobile GPU (3x reduction)

How will the DNN be optimized
-When optimizing we are willing to sacrifice

accuracy for decreased computations and

storage

-The figure on the right displays that the

resource distribution is largely in-balanced in

regards to output size relative to the resources

used (storage and computations)

There are 3 main methods for optimizing, used

in this paper:

-Matrix Factorization

-Matrix Pruning

-Architecture Changes

Optimization 1: Matrix Factorization
- ”Matrix Factorization replaces the weight matrices

and convolution kernels by their low rank

approximations”

Benefits:

-Replacing a M x M weight matrix W(M x M)

with its singular value decomposition U(M x k)V(k

x M) reduces storage overhead from M^2 to 2Mk

and computational overhead from M^3 to

2M^(2)k.

-Recent results report 5.5x memory use

reductions and 2.7x FLOP reduction, at a loss of

only 1.7% accuracy for the AlexNet model, and 1.2x

and 4.9x reductions for a 0.5% accuracy loss

Optimization 2: Matrix Pruning
-”Matrix pruning sparsifies matrices by zeroing very

small values, use low-bitwidth representations for

remaining non-zero values and use compressed

representations for those values.”

Benefits:

-The most recent results report a 11/8x reduction in

model size and a 3/5x reduction on FLOPs for

AlexNet/VGGNet, while sacrificing essentially no

accuracy

-However, giving up 2% of accuracy can improve

memory size reduction to 20x

Optimization 3: Architecture Changes
-”Architectural changes explore the space of model architectures, including varying the

number of layers, size of weight matrices including kernels, etc.”

-For example, reducing the number of layers in a DNN from 19 to 11 results in a drop

of accuracy of 4.1%

Approximation Results:
Memory
Note the log-scale Y axis!

Approximation Results:
Energy
Y-axis is not log-scale here.

Approximation Results:
Latency
Back to a log-scale Y-axis!

AMS: Approximate Model Scheduling

Figure:

CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=985491

● We’ve established an accuracy/resources tradeoff...

○ How much do we approximate?

● Maximize accuracy while under constraints:

○ Energy consumption

○ Cloud utilization

○ Cache/Memory capacity

○ Time (limited by use case)

■ Latency (input -> output delay)

■ Framerate (output frequency)

● Similar to knapsack/packing problem!

○ Create large “catalogue” of “variant” networks

○ Choose optimal set of approximate models while staying under

constraints

● Major difference: constraints can change over time!

Novel Approximation:
Specialization
● A model might recognize thousands of people...

● But we don’t usually see that many people at once!

● Dynamically retrain models that specialize in

recognizing what is being observed!

○ Need to save some time, though...

■ Pretarget: train only output layer!

■ Pre-forward: store output from

second-last layer as input for the

output layer!

Novel Approximation:
Sharing
● A neural network transforms input data into data of a

different type.

○ At output, this can be classifications or predictions...

○ In the middle layers, the data still means something!

■ Middle-layer output can be considered a

unique encoding of the input.

● Different networks that recognize facial features might have

very similar early layers!

○ Train early layers and late layers separately...

○ Make similar networks share the same early layers...

○ Only load/run the early layers once!

Effects of Specialization /
Sharing

Reduces resource use across the board, and doesn’t hurt accuracy too much.

Importantly: We meet our energy constraint now!

Example Results!
● “Original Model:”

○ No optimization/approximation

● “Best Model:”

○ Static approximated model

○ Chosen from “knee” of approximation curves

○ Not dynamically scheduled as constraints change

○ Does not use specialization or sharing

● “All Models:”

○ The paper’s proposed solution.

○ Models generated using all discussed methods.

○ Scheduled using MCDNN.

○ Meets demands with good accuracy :)

More Example Results!
● Ran several computer vision applications at once

for a day on a mobile device.

● The cloud is still needed to make it through the

day.

● Spotty cloud connection is acceptable.

Architecture
Recap/Overview
● Compile/Training time:

○ Programmer supplies:

■ Input type (e.g. faces)

■ Model schema (e.g. 8 layer CNN)

■ Training data

■ Validation data

○ Compiler creates:

■ Fully trained models

■ Catalog of approximated models

● Runtime, at every time step:

○ Specializer specializes, if possible :)

○ Scheduler dictates execution:

■ Chooses model

■ Chooses where to execute it

○ Models all execute

○ Output is returned to user

Questions?

Multiple Choice Q’s (do we even need these?)
Paper: “MCDNN: An Approximation-Based Execution Framework for Deep Stream Processing Under Resource

Constraints”

1. Select from the following all that can be used to create an approximate version of a neural network:

a. Matrix Pruning

b. Matrix Factorization

c. Matrix Inversion

d. Architecture Changes

e. Adam Optimization

2. Which one of the following is the largest obstacle for deep neural networks running on mobile devices (with current

technology)?

a. Memory use

b. Energy use

c. Weak processing

d. Spotty network connectivity

3. In this paper, “specialization” of neural networks is made possible due to which one of the following:

a. Pre-training many smaller neural networks using subsets of the training data

b. Training the network as it is executing, using recent outputs as training data

c. Sacrificing flexibility and accepting that the system is only ever going to be used in a small number of situations

d. Re-training the output layer at runtime on a subset of the training data

