MCDNN: An Approximation-Based Execution Framework for Deep Stream Processing Under Resource Constraints

$\bullet \bullet \bullet$

Seungyeop Han¹, Haichen Shen¹, Matthai Philipose², Sharad Agarwal², Alec Wolman², Arvind Krishnamurthy¹

1: University of Washington 2: Microsoft Research

Presented by: Cody LaFlamme, Michael Wollenhaup

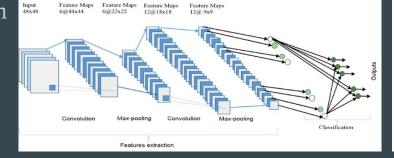
https://homes.cs.washington.edu/~arvind/paper s/mcdnn.pdf

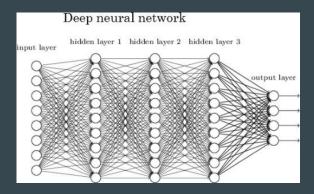
What are DNN?

- A **Deep Neural Network** is classified by it's large amount of hidden layers. A neural network is considered "deep" if it's **Credit Assignment Path** (CAP) index is greater than 2

-Rather than layers in a neuron layout, DNN (specifically CNN) can be represented by an array (the input image) where each layer is a matrix operation. These operations include:

-Matrix Multiplication -Convolution -Max-Pooling -Non-Linearizing -Rescaling





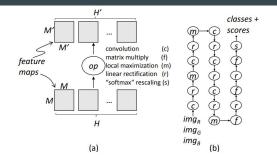


Figure 2: (a) DNN "layers" are array operations on lists of arrays called feature maps. (b) A state-of-the-art network for scene recognition, formed by connecting layers.

The Resources Required for DNN

-DNN (Deep Neural Networks) are the dominant approach, especially in computer vision applications, due to their "excellent recognition performance"

-However, DNN are expensive in terms of memory and GFLOPS of computing power required for an operation, so they are typically only used in server based scenarios

-Due to the power of DNN, and the applications of DNN, there is strong motivation for a mobile implementation

-There are some solutions currently in place such as hand-crafted DNN for execution on co-processors (sw) and custom hardware accelerators (hw)

	face [46]	scene [52]	object [44]
training time (days)	3	6	14-28
memory (floats)	103M	76M	138M
compute (FLOPs)	1.00G	2.54G	30.9G
accuracy (%)	97	51	94

Table 1: Although DNNs deliver state-of-the art classification accuracy on many recognition tasks, this functionality comes at very high memory (space shown is to store an active model) and computational cost (to execute a model on a *single* image window).

Continuous Mobile Vision Systems

-This paper will specifically target enabling a large collection of face, scene, and object recognition algorithms to be applied to video streams from mobile devices

-The DNN are expected to be run multiple times to many of the frames

-The example to the right is a "state-of-the-art mobile/cloud Continuous Mobile Vision (CMV) system

-A resolution of 4096x2160 pixels (large FOV) @ 15 FPS would be a reasonable use-case of this model

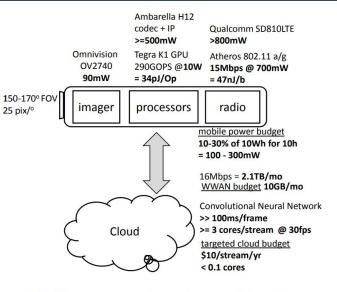


Figure 1: Basic components of a continuous mobile vision system.

Continuous Mobile Vision Systems

-The device would have an expected power consumption of around 1.3-1.6 W (90 mW for imaging, 0.7-1 W for wireless offload, and 0.5 W on compression)

-Utilizing a realistic compression (100x) would yield a 16 Mbps stream, or around 2.1 TB per month at 10 hours of usage per day

-If we make a consertive estimation of 1 DNN applied per frame and 100 ms execution latency; a single CPU would need 1.5-3 cores (commonly more) to keep up with 15-30 frames per second

-However, a large 3Ah mobile phone battery would yield roughly 1.2 W over 10 hours; a mobile plan would only allow around 10 GB per month

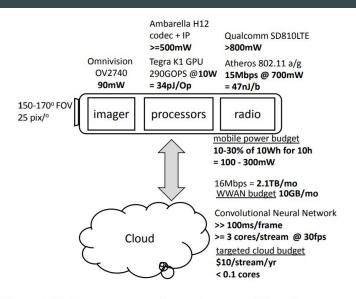
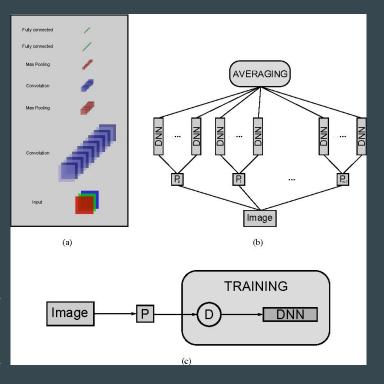


Figure 1: Basic components of a continuous mobile vision system.

Approximation as a Solution for CMVS

-This paper implements a solution to this problem that finds itself part way between the hardware accelerators and the handcrafted DNN software solution. It is called model optimization. -These are techniques that apply automatically to any DNN and reduce associated memory and processing costs, typically at the cost of classification accuracy.

-It is possible to sacrifice a moderate amount of accuracy (1%-3%), while obtaining memory reduction that allow the models to fit within mobile memories (10x reduction), and processing reduction that allows the model to be executed on a mobile GPU (3x reduction)



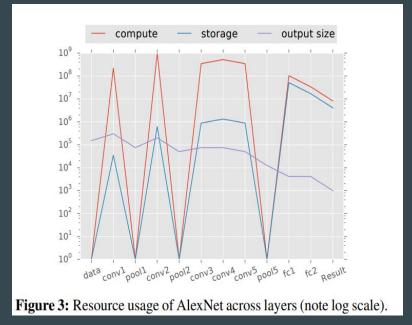
How will the DNN be optimized

-When optimizing we are willing to sacrifice accuracy for decreased computations and storage

-The figure on the right displays that the resource distribution is largely in-balanced in regards to output size relative to the resources used (storage and computations)

There are 3 main methods for optimizing, used in this paper:

- -Matrix Factorization
- -Matrix Pruning
- -Architecture Changes



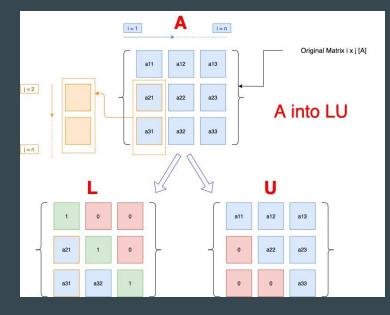
Optimization 1: Matrix Factorization

 - "Matrix Factorization replaces the weight matrices and convolution kernels by their low rank approximations"

Benefits:

-Replacing a M x M weight matrix W(M x M) with its singular value decomposition U(M x k)V(k x M) reduces storage overhead from M^2 to 2Mk and computational overhead from M^3 to 2M^(2)k.

-Recent results report 5.5x memory use reductions and 2.7x FLOP reduction, at a loss of only 1.7% accuracy for the AlexNet model, and 1.2x and 4.9x reductions for a 0.5% accuracy loss



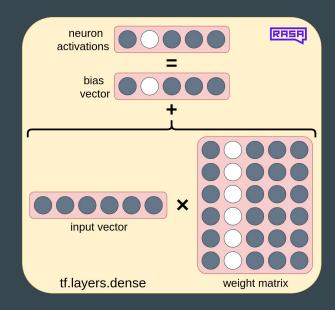
Optimization 2: Matrix Pruning

-"Matrix pruning sparsifies matrices by zeroing very small values, use low-bitwidth representations for remaining non-zero values and use compressed representations for those values."

Benefits:

-The most recent results report a 11/8x reduction in model size and a 3/5x reduction on FLOPs for AlexNet/VGGNet, while sacrificing essentially no accuracy

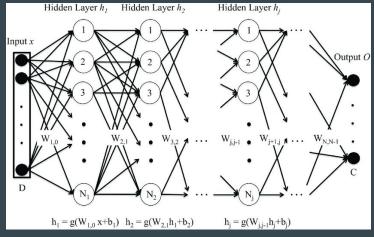
-However, giving up 2% of accuracy can improve memory size reduction to 20x



Optimization 3: Architecture Changes

-"Architectural changes explore the space of model architectures, including varying the number of layers, size of weight matrices including kernels, etc."

-For example, reducing the number of layers in a DNN from 19 to 11 results in a drop of accuracy of 4.1%



Approximation Results: Memory

Note the log-scale Y axis!

Task	Description (# training images, # test images, # class)			
V	VGGNet [44] on ImageNet data			
Α	AlexNet on ImageNet data [18] for object recognition (1.28M, 50K, 1000)			
S	AlexNet on MITPlaces205 data [52] for scene recognition			
М	(2.45M, 20K, 205) re-labeled S for inferring manmade/natural scenes			
L	re-labeled S for inferring natural/aritificially lighting scenes			
Н	re-labeled S with Sun405 [49] for detecting horizons			
D	DeepFaceNet replicating [46] with web-crawled face data (50K, 5K, 200			
Y	re-labeled D for age: 0-30, 30-60, 60+			
G	re-labeled D for gender: M, F			
R	re-labeled D for race: African American, White, Hispanic, East Asian, South Asian, Other			

 Table 2: Description of classification tasks.

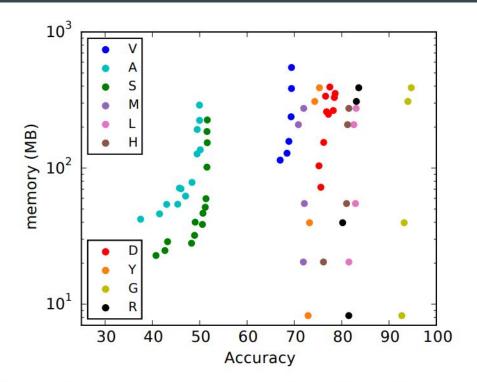


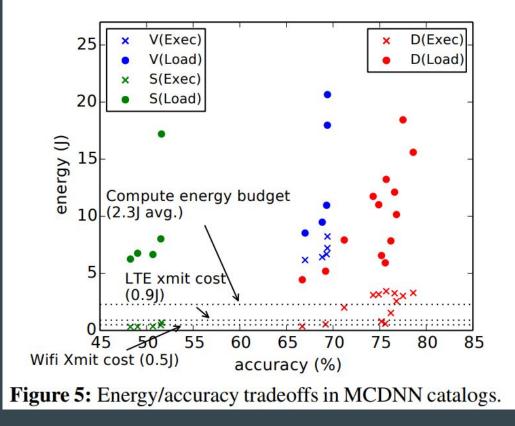
Figure 4: Memory/accuracy tradeoffs in MCDNN catalogs.

Approximation Results: Energy

Y-axis is *not* log-scale here.

Task	Description (# training images, # test images, # class)			
V	VGGNet [44] on ImageNet data			
Α	AlexNet on ImageNet data [18] for object recognition (1.28M, 50K, 1000)			
S	AlexNet on MITPlaces205 data [52] for scene recognition			
	(2.45M, 20K, 205)			
Μ	re-labeled S for inferring manmade/natural scenes			
L	re-labeled S for inferring natural/aritificially lighting scenes			
Н	re-labeled S with Sun405 [49] for detecting horizons			
D	DeepFaceNet replicating [46] with web-crawled face data (50K, 5K, 200)			
Y	re-labeled D for age: 0-30, 30-60, 60+			
G	re-labeled D for gender: M, F			
R	re-labeled D for race: African American, White, Hispanic, East Asian			
	South Asian, Other			

Table 2: Description of classification tasks.



Approximation Results: Latency

Back to a log-scale Y-axis!

Description (# training images, # test images, # class)			
VGGNet [44] on ImageNet data			
AlexNet on ImageNet data [18] for object recognition (1.28M, 50K, 1000)			
AlexNet on MITPlaces205 data [52] for scene recognition			
(2.45M, 20K, 205)			
re-labeled S for inferring manmade/natural scenes			
re-labeled S for inferring natural/aritificially lighting scenes			
re-labeled S with Sun405 [49] for detecting horizons			
DeepFaceNet replicating [46] with web-crawled face data (50K, 5K, 200)			
re-labeled D for age: 0-30, 30-60, 60+			
re-labeled D for gender: M, F			
re-labeled D for race: African American, White, Hispanic, East Asian,			
South Asian, Other			

 Table 2: Description of classification tasks.

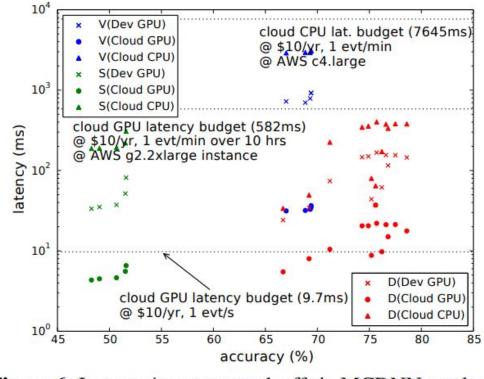
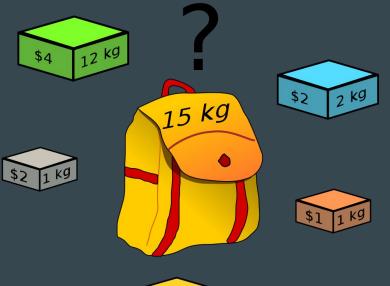


Figure 6: Latency/accuracy tradeoffs in MCDNN catalogs.

AMS: Approximate Model Scheduling

- We've established an accuracy/resources tradeoff...
 - How much do we approximate?
- Maximize accuracy while under **constraints**:
 - Energy consumption
 - Cloud utilization
 - Cache/Memory capacity
 - Time (limited by use case)
 - Latency (input -> output delay)
 - Framerate (output frequency)
- Similar to knapsack/packing problem!
 - Create large "catalogue" of "variant" networks
 - Choose optimal set of approximate models while staying under constraints
- Major difference: constraints can change over time!



Novel Approximation: Specialization

- A model might recognize thousands of people...
- But we don't usually see that many people at once!
- Dynamically retrain models that specialize in recognizing what is being observed!
 - Need to save some time, though...
 - **Pretarget**: train only output layer!
 - Pre-forward: store output from second-last layer as input for the output layer!

Task (variant)	Time to specialize (s)			
	Full re-train	+ Retarget	+ Pre-forward	
Face (C0)	2.6e4	30.4	4.3	
Face (C4)	1.4e4	24.0	4.2	
Object (A0)	4.8e5	152.4	14.2	
Object (A9)	9.1e4	123.0	14.1	

Table 3: Runtime overhead of specialization.



Figure 7: Model specialization: (a) Cascading specialized models. (b) MCDNN infrastructure for specialization.

Novel Approximation: Sharing

- A neural network transforms input data into data of a different type.
 - At output, this can be classifications or predictions...
 - In the middle layers, the data still means something!
 - Middle-layer output can be considered a unique encoding of the input.
- Different networks that recognize facial features might have very similar early layers!
 - Train early layers and late layers separately...
 - Make similar networks **share** the same early layers...
 - Only load/run the early layers once!

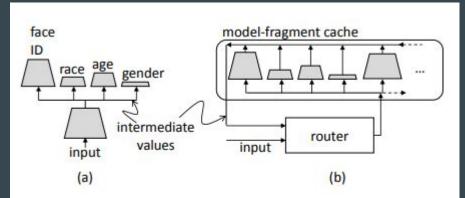
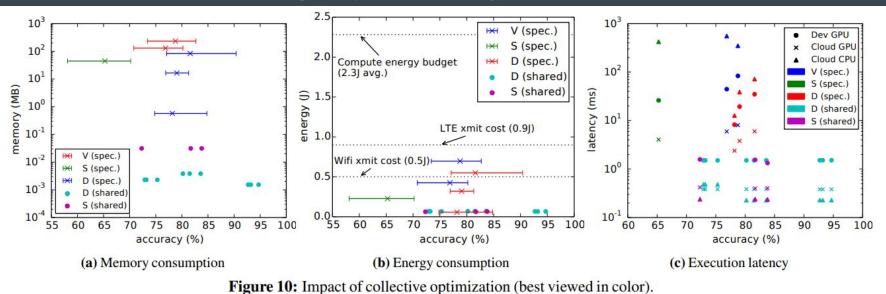


Figure 8: Model sharing: (a) Sharing model fragments for facial analysis. (b) MCDNN infrastructure for sharing, replicated in the client and cloud.

Effects of Specialization / Sharing

Reduces resource use across the board, and doesn't hurt accuracy too much.



Importantly: We meet our energy constraint now!

Example Results!

- "Original Model:"
 - No optimization/approximation
- "Best Model:"
 - Static approximated model
 - Chosen from "knee" of approximation curves
 - *Not* dynamically scheduled as constraints change
 - *Does not* use specialization or sharing
- "All Models:"
 - \circ The paper's proposed solution.
 - Models generated using all discussed methods.
 - Scheduled using MCDNN.
 - \circ Meets demands with good accuracy :)

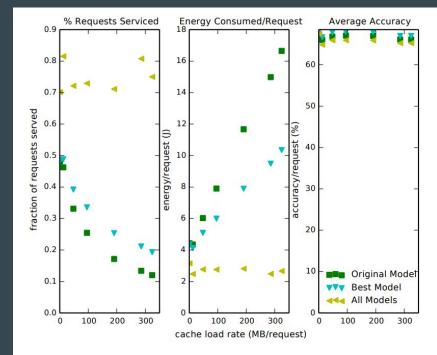


Figure 11: Impact of MCDNN's dynamically-sized caching scheme.

More Example Results!

- Ran several computer vision applications at once for a day on a mobile device.
- The cloud is still needed to make it through the day.
- Spotty cloud connection is acceptable.

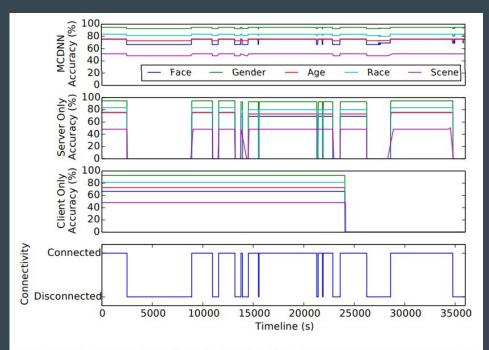


Figure 13: Accuracy of each application over time for the Glimpse usage. Each line shows a single application.

Architecture Recap/Overview

- Compile/Training time:
 - **Programmer supplies**:
 - Input type (e.g. faces)
 - Model schema (e.g. 8 layer CNN)
 - Training data
 - Validation data
 - Compiler creates:
 - Fully trained models
 - Catalog of approximated models
- Runtime, at every time step:
 - Specializer specializes, if possible :)
 - Scheduler dictates execution:
 - Chooses model
 - Chooses where to execute it
 - Models all execute
 - Output is returned to user

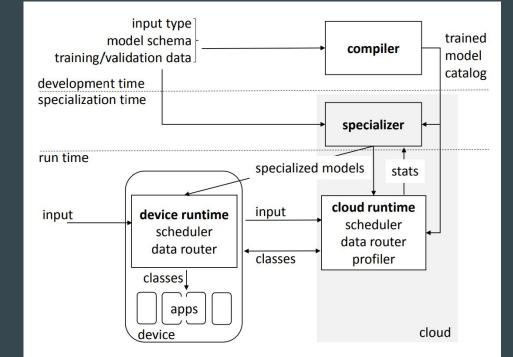


Figure 9: Architecture of the MCDNN system.

Questions?

Multiple Choice Q's (do we even need these?)

Paper: "MCDNN: An Approximation-Based Execution Framework for Deep Stream Processing Under Resource Constraints"

- 1. Select from the following all that can be used to create an approximate version of a neural network:
 - a. Matrix Pruning
 - b. Matrix Factorization
 - c. Matrix Inversion
 - d. Architecture Changes
 - e. Adam Optimization
- 2. Which one of the following is the *largest* obstacle for deep neural networks running on mobile devices (with current technology)?
 - a. Memory use
 - b. Energy use
 - c. Weak processing
 - d. Spotty network connectivity
- 3. In this paper, "specialization" of neural networks is made possible due to which one of the following:
 - a. Pre-training many smaller neural networks using subsets of the training data
 - b. Training the network as it is executing, using recent outputs as training data
 - c. Sacrificing flexibility and accepting that the system is only *ever* going to be used in a small number of situations
 - d. Re-training the output layer at runtime on a subset of the training data