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What are DNN?
- A Deep Neural Network is classified by it’s large amount 

of hidden layers. A neural network is considered “deep” if 

it’s Credit Assignment Path (CAP) index is greater than 2

-Rather than layers in a neuron layout, DNN (specifically 

CNN) can be represented by an array (the input image) 

where each layer is a matrix operation. These operations 

include:

   -Matrix Multiplication

   -Convolution

   -Max-Pooling

   -Non-Linearizing

   -Rescaling



The Resources Required for DNN
-DNN (Deep Neural Networks) are the dominant approach, especially in computer 

vision applications, due to their “excellent recognition performance”

-However, DNN are expensive in terms of memory and GFLOPS of computing power 

required for an operation, so they are typically only used in server based scenarios

-Due to the power of DNN, and the applications of DNN, there is strong motivation 

for a mobile implementation

-There are some solutions currently

in place such as hand-crafted DNN

for execution on co-processors (sw)

and custom hardware accelerators (hw)



Continuous Mobile Vision Systems
-This paper will specifically target enabling a large 

collection of face, scene, and object recognition 

algorithms to be applied to video streams from mobile 

devices

-The DNN are expected to be run multiple times to 

many of the frames

-The example to the right is a “state-of-the-art 

mobile/cloud Continuous Mobile Vision (CMV) system

-A resolution of 4096x2160 pixels (large FOV) @ 15 

FPS would be a reasonable use-case of this model



Continuous Mobile Vision Systems
-The device would have an expected power 

consumption of around 1.3-1.6 W (90 mW for imaging, 

0.7-1 W for wireless offload, and 0.5 W on 

compression)

-Utilizing a realistic compression (100x) would yield a 

16 Mbps stream, or around 2.1 TB per month at 10 

hours of usage per day

-If we make a consertive estimation of 1 DNN applied 

per frame and 100 ms execution latency; a single CPU 

would need 1.5-3 cores (commonly more) to keep up 

with 15-30 frames per second

-However, a large 3Ah mobile phone battery would 

yield roughly 1.2 W over 10 hours; a mobile plan would 

only allow around 10 GB per month



Approximation as a Solution for CMVS
-This paper implements a solution to this problem 

that finds itself part way between the hardware 

accelerators and the handcrafted DNN software 

solution. It is called model optimization.

-These are techniques that apply automatically to 

any DNN and reduce associated memory and 

processing costs, typically at the cost of 

classification accuracy.

-It is possible to sacrifice a moderate amount of 

accuracy (1%-3%), while obtaining memory 

reduction that allow the models to fit within mobile 

memories (10x reduction),  and processing 

reduction that allows the model to be executed on a 

mobile GPU (3x reduction)



How will the DNN be optimized
-When optimizing we are willing to sacrifice 

accuracy for decreased computations and 

storage

-The figure on the right displays that the 

resource distribution is largely in-balanced in 

regards to output size relative to the resources 

used (storage and computations)

There are 3 main methods for optimizing, used 

in this paper:

-Matrix Factorization

-Matrix Pruning

-Architecture Changes



Optimization 1: Matrix Factorization
- ”Matrix Factorization replaces the weight matrices 

and convolution kernels by their low rank 

approximations”

Benefits:

-Replacing a M x M weight matrix W(M x M) 

with its singular value decomposition U(M x k)V(k 

x M) reduces storage overhead from M^2 to 2Mk 

and computational overhead from M^3 to 

2M^(2)k.

-Recent results report 5.5x memory use 

reductions and 2.7x FLOP reduction, at a loss of 

only 1.7% accuracy for the AlexNet model, and 1.2x 

and 4.9x reductions for a 0.5% accuracy loss



Optimization 2: Matrix Pruning
-”Matrix pruning sparsifies matrices by zeroing very 

small values, use low-bitwidth representations for 

remaining non-zero values and use compressed 

representations for those values.”

Benefits:

-The most recent results report a 11/8x reduction in 

model size and a 3/5x reduction on FLOPs for 

AlexNet/VGGNet, while sacrificing essentially no 

accuracy

-However, giving up 2% of accuracy can improve 

memory size reduction to 20x



Optimization 3: Architecture Changes
-”Architectural changes explore the space of model architectures, including varying the 

number of layers, size of weight matrices including kernels, etc.”

-For example, reducing the number of layers in a DNN from 19 to 11 results in a drop 

of accuracy of 4.1%



Approximation Results:
Memory
Note the log-scale Y axis!



Approximation Results:
Energy
Y-axis is not log-scale here.



Approximation Results:
Latency
Back to a log-scale Y-axis!



AMS: Approximate Model Scheduling

Figure:

CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=985491

● We’ve established an accuracy/resources tradeoff...

○ How much do we approximate?

● Maximize accuracy while under constraints:

○ Energy consumption

○ Cloud utilization

○ Cache/Memory capacity

○ Time (limited by use case)

■ Latency (input -> output delay)

■ Framerate (output frequency)

● Similar to knapsack/packing problem! 

○ Create large “catalogue” of “variant” networks

○ Choose optimal set of approximate models while staying under 

constraints

● Major difference: constraints can change over time!



Novel Approximation: 
Specialization
● A model might recognize thousands of people...

● But we don’t usually see that many people at once!

● Dynamically retrain models that specialize in 

recognizing what is being observed!

○ Need to save some time, though...

■ Pretarget: train only output layer!

■ Pre-forward: store output from 

second-last layer as input for the 

output layer!



Novel Approximation: 
Sharing
● A neural network transforms input data into data of a 

different type.

○ At output, this can be classifications or predictions...

○ In the middle layers, the data still means something!

■ Middle-layer output can be considered a 

unique encoding of the input.

● Different networks that recognize facial features might have 

very similar early layers!

○ Train early layers and late layers separately...

○ Make similar networks share the same early layers...

○ Only load/run the early layers once!



Effects of Specialization / 
Sharing

Reduces resource use across the board, and doesn’t hurt accuracy too much.

Importantly: We meet our energy constraint now!



Example Results!
● “Original Model:” 

○ No optimization/approximation

● “Best Model:”

○ Static approximated model

○ Chosen  from “knee” of approximation curves

○ Not dynamically scheduled as constraints change

○ Does not use specialization or sharing

● “All Models:”

○ The paper’s proposed solution.

○ Models generated using all discussed methods.

○ Scheduled using MCDNN.

○ Meets demands with good accuracy :)



More Example Results!
● Ran several computer vision applications at once 

for a day on a mobile device.

● The cloud is still needed to make it through the 

day.

● Spotty cloud connection is acceptable.



Architecture 
Recap/Overview
● Compile/Training time:

○ Programmer supplies:

■ Input type (e.g. faces)

■ Model schema (e.g. 8 layer CNN)

■ Training data

■ Validation data

○ Compiler creates:

■ Fully trained models

■ Catalog of approximated models

● Runtime, at every time step:

○ Specializer specializes, if possible :)

○ Scheduler dictates execution:

■ Chooses model

■ Chooses where to execute it

○ Models all execute

○ Output is returned to user



Questions?



Multiple Choice Q’s (do we even need these?)
Paper: “MCDNN: An Approximation-Based Execution Framework for Deep Stream Processing Under Resource 

Constraints”

1. Select from the following all that can be used to create an approximate version of a neural network:

a. Matrix Pruning

b. Matrix Factorization

c. Matrix Inversion

d. Architecture Changes

e. Adam Optimization

2. Which one of the following is the largest obstacle for deep neural networks running on mobile devices (with current 

technology)?

a. Memory use

b. Energy use

c. Weak processing

d. Spotty network connectivity

3. In this paper, “specialization” of neural networks is made possible due to which one of the following:

a. Pre-training many smaller neural networks using subsets of the training data

b. Training the network as it is executing, using recent outputs as training data

c. Sacrificing flexibility and accepting that the system is only ever going to be used in a small number of situations

d. Re-training the output layer at runtime on a subset of the training data


