MCDNN: An Approximation-Based Execution
Framework for Deep Stream Processing Under
Resource Constraints

Seungyeop Han', Haichen Shen', Matthai Philipose?, Sharad Agarwal?,
Alec Wolman?, Arvind Krishnamurthy'

1: University of Washington
2: Microso ft Researc h

Presente d by:

Cody LaFlamme, Michael Wollenhaup
https://homes.cs.washington.edu/~arvind/paper
s/mednn.pdf

What are DNN?

- A Deep Neural Network is classified by it’s large amount
of hidden layers. A neural network is considered “deep” if
it’s Credit Assignment Path (CAP) index is greater than 2

-Rather than layers in a neuron layout, DNN (specifically
CNN) can be represented by an array (the input image)
where each layer is a matrix operation. These operations
include:

-Matrix Multiplication
-Convolution
-Max-Pooling
-Non-Linearizing
-Rescaling

Deep neural network

hidden layer 1 hidden layer 2
yer

imgg
imgg

Figure 2: (a) DNN “layers” are array operations on lists of arrays
called feature maps. (b) A state-of-the-art network for scene
recognition, formed by connecting layers.

The Resources Required for DNN

-DNN (Deep Neural Networks) are the dominant approach, especially in computer
vision applications, due to their “excellent recognition performance”

-However, DNN are expensive in terms of memory and GFLOPS of computing power
required for an operation, so they are typically only used in server based scenarios

-Due to the power of DNN, and the applications of DNN, there is strong motivation

for a mobile implementation
face [46] scene[52] object [44]

-There are some solutions currently training time (days) 3 6 14-28
X memory (floats) 103M 76M 138M
in place such as hand-crafted DNN compute (FLOPs) 100G 254G 309G

. accuracy (%) 97 51 94
fOI execution on co—processors (SW)

Table 1: Although DNNs deliver state-of-the art classification
and custom hardware accelerators (hW) accuracy on many recognition tasks, this functionality comes at
very high memory (space shown is to store an active model) and
computational cost (to execute a model on a single image window).

Continuous Mobile Vision Systems

-This paper will specifically target enabling a large
collection of face, scene, and object recognition

algorithms to be applied to video streams from mobile omnivisin
devices 90mw

Ambarella H12
codec + IP
>=500mW

Tegra K1 GPU

Qualcomm SD810LTE
>800mwW

Atheros 802.11 a/g

290GOPS @10W 15Mbps @ 700mW

=34pJ)/Op

=47nl/b

gor]
-The DNN are expected to be run multiple times to

many of the frames

-The example to the right is a “state-of-the-art
mobile/cloud Continuous Mobile Vision (CMV) syste

-A resolution of 4096x2160 pixels (large FOV) @ 15

mobile power budget
10-30% of 10Wh for 10h
=100 - 300mW

16Mbps = 2.1TB/mo
WWAN budget 10GB/mo

Convolutional Neural Network
>> 100ms/frame

>= 3 cores/stream @ 30fps
targeted cloud budget
$10/stream/yr

< 0.1 cores

FPS WOLlld be a reaSOHable use-case Of thlS model Figure 1: Basic components of a continuous mobile vision system.

Continuous Mobile Vision Systems

-The device would have an expected power
consumption of around 1.3-1.6 W (90 mW for imaging,
0.7-1 W for wireless offload, and 0.5 W on
compression)

-Utilizing a realistic compression (100x) would yield a [Jisais
16 Mbps stream, or around 2.1 TB per month at 10
hours of usage per day

-If we make a consertive estimation of 1 DNN applied
per frame and 100 ms execution latency; a single CPU
would need 1.5-3 cores (commonly more) to keep up
with 15-30 frames per second

Omnivision
0v2740

Ambarella H12
codec + IP
>=500mW

Tegra K1 GPU

Qualcomm SD810LTE
>800mwW

Atheros 802.11 a/g

290GOPS @10W 15Mbps @ 700mW
=34pJ)/Op

=47nl/b

mobile power budget
10-30% of 10Wh for 10h
=100 - 300mW

16Mbps = 2.1TB/mo
WWAN budget 10GB/mo

Convolutional Neural Network
>> 100ms/frame

>= 3 cores/stream @ 30fps
targeted cloud budget
$10/stream/yr

< 0.1 cores

‘HOW@VCI a large 3Ah mObﬂe phone battery WOUld Figure 1: Basic components of a continuous mobile vision system.
2

yield roughly 1.2 W over 10 hours; a mobile plan would
only allow around 10 GB per month

Approximation as a Solution for CMVS

-This paper implements a solution to this problem
that finds itself part way between the hardware
accelerators and the handcrafted DNN software
solution. It is called model optimization.

-These are techniques that apply automatically to
any DNN and reduce associated memory and
processing costs, typically at the cost of
classification accuracy.

-It is possible to sacrifice a moderate amount of
accuracy (1%-3%), while obtaining memory
reduction that allow the models to fit within mobile
memories (10x reduction), and processing
reduction that allows the model to be executed on a
mobile GPU (3x reduction)

How will the DNN be optimized

-When optimizing we are willing to sacrifice
accuracy for decreased computations and

storage — compute — storage output size

-The figure on the right displays that the
resource distribution is largely in-balanced in
regards to output size relative to the resources
used (storage and computations)

There are 3 main methods for optimizing, used

in thls p ap er: ge? cO“\!XQOO\XCO“ﬂ900\1@“3@‘“ Aco‘ws(ﬁo\s & \le"‘“\‘

-Matrix Factorization Figure 3: Resource usage of AlexNet across layers (note log scale).

-Matrix Pruning
-Architecture Changes

Optimization 1: Matrix Factorization

- "Matrix Factorization replaces the weight matrices
and convolution kernels by their low rank
approximations”

Benefits:

-Replacing a M x M weight matrix W(M x M)
with its singular value decomposition U(M x k)V(k
x M) reduces storage overhead from M2 to 2Mk
and computational overhead from M”3 to
2MN(2)k.

-Recent results report 5.5x memory use

reductions and 2.7x FLOP reduction, at a loss of
only 1.7% accuracy for the AlexNet model, and 1.2x
and 4.9x reductions for a 0.5% accuracy loss

Optimization 2: Matrix Pruning

-"Matrix pruning sparsifies matrices by zeroing very
small values, use low-bitwidth representations for reuon (@ Q@@

activations

remaining non-zero values and use compressed

" ;
e 9000 @
+

representations for those values.”

Benefits: :%:::
(
-The most recent results report a 11/8x reduction in | ————— ® (5 000
. : 000000 x .
model size and a 3/5x reduction on FLOPs for T tvesor :%:::
AlexNet/VGGNet, while sacrificing essentially no .6.—..

accuracy tf.layers.dense weight matrix
-However, giving up 2% of accuracy can improve
memory size reduction to 20x

Optimization 3: Architecture Changes

-"Architectural changes explore the space of model architectures, including varying the

number of layers, size of weight matrices including kernels, etc.”

-For example, reducing the number of layers in a DNN from 19 to 11 results in a drop

of accuracy of 4.1%

N

\:\

h; =g(W, o xtb)) hy=g(W, h+b,) hj = g(W_i‘j_lhj+bj)

Approximation Results:
Memory

Note the log-scale Y axis!

Description (# training images, # test images, # class)

mo<KOdITC =g

VGGNet [44] on ImageNet data

AlexNet on ImageNet data [18] for object recognition (1.28M, 50K, 1000)
AlexNet on MITPlaces205 data [52] for scene recognition

(2.45M, 20K, 205)

re-labeled S for inferring manmade/natural scenes

re-labeled S for inferring natural/aritificially lighting scenes

re-labeled S with Sun405 [49] for detecting horizons

DeepFaceNet replicating [46] with web-crawled face data (50K, 5K, 200)
re-labeled D for age: 0-30, 30-60, 60+

re-labeled D for gender: M, F

re-labeled D for race: African American, White, Hispanic, East Asian
South Asian, Other

Table 2: Description of classification tasks.

[
o
N

)
=
ay
o
E
]
E

50 60 70
Accuracy

Figure 4: Memory/accuracy tradeoffs in MCDNN catalogs.

Approximation Results:
Energy

V(Exec) x D(Exec)
Y-axis is not log-scale here. V(Load) e D(Load)
S(Exec)
S(Load)

Description (# training images, # test images, # class)

VGGNet [44] on ImageNet data

AlexNet on ImageNet data [18] for object recognition (1.28M, 50K, 1000)
AlexNet on MITPlaces205 data [52] for scene recognition

(2.45M, 20K, 205)

re-labeled S for inferring manmade/natural scenes

re-labeled S for inferring natural/aritificially lighting scenes Com pute energy bud get
re-labeled S with Sun405 [49] for detecting horizons B (2. 3J avg.)

DeepFaceNet replicating [46] with web-crawled face data (50K, 5K, 200)

re-labeled D for age: 0-30, 30-60, 60+ 9

re-labeled D for gender: M, F ® 0

re-labeled D for race: African American, White, Hispanic, East Asian, ®

South Asian, Other B LTE xmit cost
Table 2: Description of classification tasks.

=
>
o
—_
]
e
o

mo<KOdITC =g

Wifi Xmit cost (0.5)) accuracy (%)

Figure 5: Energy/accuracy tradeoffs in MCDNN catalogs.

Approximation Results:
Latency

T | S spelosssuat s s
: V:aoud GP’U) cloud CPU lat. budget (7645ms)|
Back to a log-scale Y-axis! @ $104yr, 1 evt/min
a V(Cloud CPU) @ AWS c4.large
x S(Dev GPU)
10° H| e S(Cloud GPU) x .
Task Description (# training images, # test images, # class) a S(Cloud CPU) oo, 3 S—————
V VGGNet [44] on ImageNet data = cloud GPU latency budget (582ms) el T
A AlexNet on ImageNet data [18] for object recognition (1.28M, 50K, 1000) £ @ $10/yr, 1 evt/min over 10 hrs A
S AlexNet on MITPlaces205 data [52] for scene recognition - @ g 2.2xla rge instance xx X% x o
(2.45M, 20K, 205) > 102 b x |
M re-labeled S for inferring manmade/natural scenes g x X A
L re-labeled S for inferring natural/aritificially lighting scenes] K Z Ax
H re-labeled S with Sun405 [49] for detecting horizons "&; & S
D DeepFaceNet replicating [46] with web-crawled face data (50K, 5K, 200) o o o o
Y re-labeled D for age: 0-30, 30-60, 60+ 2 ee® oo
G re-labeled D for gender: M, F 2
R re-labeled D for race: African American, White, Hispanic, East Asian, 101 B B S e S A TS B AR B o @
South Asian, Other o L
. @
Table 2: Description of classification tasks. e s x D(Dev GPU)
cloud GPU latency budget (9.7ms)| e D(Cloud GPU)
@ $10/yr, 1 evt/s 4 D(Cloud CPU)
100 1 1 1 L 1 I 1
45 50 55 60 65 70 75 80 85

accuracy (%)

Figure 6: Latency/accuracy tradeoffs in MCDNN catalogs.

AMS: Approximate Model Scheduling

e We've established an accuracy/resources tradeoft..
o How much do we approximate?

R

R

e Similar to knapsack/packing problem!

o Create large “catalogue” of “variant” networks mm

o Choose optimal set of approximate models while staying under

e Maximize accuracy while under constraints:
o Energy consumption
Cloud utilization m‘@

@)
o Cache/Memory capacity
(@)

Time (limited by use case)
m Latency (input -> output delay)

m Framerate (output frequency)

constraints

e Major difference: constraints can change over timel!

Figure:
CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=985491

Novel Approximation:
Specialization

e A model might recognize thousands of people..
e But we don’t usually see that many people at once!

e Dynamically retrain models that specialize in
recognizing what is being observed!

o Need to save some time, though..
m Pretarget: train only output layer!
m Pre-forward: store output from
second-last layer as input for the
output layer!

Task (variant) Time to specialize (s)

Full re-train + Retarget + Pre-forward

Face (CO0) 2.6e4 30.4 43
Face (C4) 1.4e4 24.0 42
Object (A0) 4.8e5 1524 14.2
Object (A9) 9.1e4 123.0 14.1

Table 3: Runtime overhead of specialization.

training data

specializer

ized generic
mpdels

catalog
to scheduler

from classi iecrlass
(b)

specialized
variant

(a)

CDF
over
classes

Figure 7: Model specialization: (a) Cascading specialized models.
(b) MCDNN infrastructure for specialization.

Novel Approximation:
Sharing

e A neural network transforms input data into data of a
different type. model-fragment cache
o At output, this can be classifications or predictions..
o In the middle layers, the data still means something!
m Middle-layer output can be considered a

unique encoding of the input. Y. _—
router
values

e Different networks that recognize facial features might have input
very similar early layers! (a) (b)
o Train early layers and late layers separately..
o Make similar networks share the same early layers.. Figure 8: Model sharing: (a) Sharing model fragments for facial

analysis. (b) MCDNN infrastructure for sharing, replicated in the
client and cloud.

o Only load/run the early layers once!

Effects of Specialization /
Sharing

Reduces resource use across the board, and doesn’t hurt accuracy too much.

Importantly: We meet our energy constraint now!

V (spec.) Dev ‘GPU
S (spec.) Cloud GPU
““I'Compute energy budget D (spec.) |] Cloud CPU
(2.3) avg.) D (shared) V (spec.)
S (spec.)
S (shared) || D (spec.)
D (shared)
S (shared)

N
(=]

ez
3

LTE xmit cost (0.9))
e e N

Wifi xmit cost (0.5))———

energy (J)

memory (MB)
(=]
=}

latency (ms)
=
4

V (spec.)
S (spec.)
D (spec.) 0.5 P
D (shared) . . - x X X » X
S (shared)

[y
o
o

AMA A M A

T T N L " L N 0.0 L L y O P P-84 ®9 10'1 " " L : N
60 65 70 75 80 85 90 95 100 55 60 65 70 7S5 80 85 90" 95 ‘100 70 75 80 85 90 95 100
accuracy (%) accuracy (%) accuracy (%)

(a) Memory consumption (b) Energy consumption (c) Execution latency

Figure 10: Impact of collective optimization (best viewed in color).

Example Results!

e “Original Model:”

O

No optimization/approximation

e “Best Model:”

O

O O O

Static approximated model

Chosen from “knee” of approximation curves
Not dynamically scheduled as constraints change
Does not use specialization or sharing

e “All Models:”

o O O O

The paper’s proposed solution.

Models generated using all discussed methods.
Scheduled using MCDNN.

Meets demands with good accuracy :)

o % Requests Serviced 1%nergy Consumed/Request Average Accuracy

°
e
J
3 = £
8 2 g
7}] o
[} =} 3
3 o o
o 9] v
o = >
> >
Y o 1%
o |4 o©
5 e 3
[v]
ol v o
9] ©
©
—
=

mlg Original Mode
v¥v Best Model
All Models

0
0 100 200 300

cache load rate (MB/request)

Figure 11: Impact of MCDNN’s dynamically-sized caching scheme.

More Example Results!

MCDNN

e Ran several computer vision applications at once
for a day on a mobile device.

e The cloud is still needed to make it through the
day.

e Spotty cloud connection is acceptable.

Client Only

P
X
2]
>
[9)
©
A
=1
O
]
<
2R
Cv
S
o
—
Pl |
wU
39
<
xX
&
>
(9]
©
~
=)
(9]
1)
<

Connected

Connectivity

Disconnected

0 5000 10000 15000 20000 25000 30000 35000
Timeline (s)

Figure 13: Accuracy of each application over time for the Glimpse
usage. Each line shows a single application.

Architecture
Recap/Overview

e Compile/Training time:
o Programmer supplies:

Input type (e.g. faces)
m Model schema (e.g. 8 layer CNN)
m Training data
m Validation data
o Compiler creates:
m Fully trained models
m Catalog of approximated models
e Runtime, at every time step:
o Specializer specializes, if possible :)
o Scheduler dictates execution:
m Chooses model
m Chooses where to execute it
o Models all execute
o Output is returned to user

trained
model
catalog

model schema

input type}
training/validation data

development time
specialization time

specializer

specialized models

run time

| device runtime

scheduler
data router

cloud runtime
scheduler
data router
profiler
classesl

Figure 9: Architecture of the MCDNN system.

Questions?

Multiple Choice Q’s (do we even need these?)

Paper: “M/\CDNN: An Approximation-Based Execution Framework for Deep Stream Processing Under Resource

Constraints”

1. Select from the following all that can be used to create an approximate version of a neural network:

a Matrix Pruning

b. Matrix Factorization
[Matrix Inversion

d Architecture Changes
e Adam Optimization

2. Which one of the following is the largest obstacle for deep neural networks running on mobile devices (with current

technology)?
a. Memory use
b. Energy use
c. Weak processing
d. Spotty network connectivity

3. In this paper, “specialization” of neural networks is made possible due to which one of the following:
a. Pre-training many smaller neural networks using subsets of the training data
b. Training the network as it is executing, using recent outputs as training data
c Sacrificing flexibility and accepting that the system is only ever going to be used in a small number of situations
d

Re-training the output layer at runtime on a subset of the training data

